H3c-technologies H3C WX5500E Series Access Controllers Manuel d'utilisateur

Naviguer en ligne ou télécharger Manuel d'utilisateur pour Routeurs H3c-technologies H3C WX5500E Series Access Controllers. H3C Technologies H3C WX5500E Series Access Controllers User Manual Manuel d'utilisatio

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 221
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs

Résumé du contenu

Page 1 - Switching Engine

H3C WX5540E Access ControllerSwitching EngineLayer 2-LAN Switching Configuration Guide Hangzhou H3C Technologies Co., Ltd. http:

Page 2

v Security mode and normal mode of voice VLANs ··························································································· 149Configu

Page 3 - Preface

89 Figure 22 Rapid state transition of an RSTP designated port If the upstream device is a third-party device, the rapid state transition implemen

Page 4 - Port numbering in examples

90 Configuration example Network requirements As shown in Figure 23, Device A connects to a third-party device that has a different spanning tree imp

Page 5 - Documentation feedback

91 Configure BPDU guard on a device with edge ports configured. BPDU guard does not take effect on loopback testing-enabled ports. For more informati

Page 6 - Contents

92 transition to the forwarding state, resulting in loops in the switched network. The loop guard function can suppress the occurrence of such loops.

Page 7

93 Step Command Remarks 3. Configure the maximum number of forwarding address entry flushes that the device can perform every 10 seconds. stp tc-pro

Page 8

94 Task Command Remarks Display the statistics of TC/TCN BPDUs sent and received by all ports in the specified MSTI or all MSTIs. display stp [ insta

Page 9

95 Figure 24 Network diagram Configuration procedure 1. Configure VLANs and VLAN member ports. (Details not shown.) Create VLAN 10, VLAN 20, and V

Page 10

96 [DeviceB-mst-region] region-name example [DeviceB-mst-region] instance 1 vlan 10 [DeviceB-mst-region] instance 3 vlan 30 [DeviceB-mst-region] inst

Page 11

97 6. Verify the configuration: In this example, suppose Device B has the lowest root bridge ID. As a result, Device B is elected as the root bridge

Page 12

98 Figure 25 MSTIs mapped to different VLANs PVST configuration example Network requirements As shown in Figure 26: • Device A and Device B work a

Page 13

vi Configuring service loopback groups ···············································································································

Page 14 - Switch C

99 Configuration procedure 1. Configure VLANs and VLAN member ports. (Details not shown.) Create VLAN 10, VLAN 20, and VLAN 30 on Device A and Devic

Page 15

100 VLAN Port Role STP State Protection 10 GigabitEthernet1/0/1 DESI DISCARDING

Page 16

101 Figure 27 Spanning trees mapped to different VLANs

Page 17 - Enabling auto power-down

102 Configuring BPDU tunneling This chapter describes how to configure BPDU tunneling. Overview As a Layer 2 tunneling technology, BPDU tunneling ena

Page 18

103 • CDP • DLDP • EOAM • GVRP • HGMP • LACP • LLDP • PAGP • PVST • STP • UDLD • VTP BPDU tunneling implementation The BPDU tunneling imp

Page 19

104 Figure 29 BPDU tunneling implementation The upper section of Figure 29 represents the service provider network (ISP network). The lower section

Page 20

105 • Before you enable BPDU tunneling for DLDP, EOAM, GVRP, HGMP, LLDP, or STP on a port, disable the protocol on the port. • Because PVST is a s

Page 21

106 For BPDUs to be recognized, the destination multicast MAC addresses configured for BPDU tunneling must be the same on the edge devices on the ser

Page 22

107 [PE1] bpdu-tunnel tunnel-dmac 0100-0ccd-cdd0 # Create VLAN 2 and assign GigabitEthernet 1/0/1 to VLAN 2. [PE1] vlan 2 [PE1-vlan2] quit [PE1] int

Page 23

108 Figure 31 Network diagram Configuration procedure 1. Configure PE 1: # Configure the destination multicast MAC address for BPDUs as 0x0100-0CC

Page 24

1 Configuring Ethernet interfaces Ethernet interface naming conventions The Ethernet interfaces on the WX5540E switching engines are named in the form

Page 25

109 Configuring VLANs This chapter describes how to configure VLANs. Overview Ethernet is a shared-media network based on the CSMA/CD mechanism. A l

Page 26

110 VLAN frame encapsulation In order that a Layer 2 switch can identify frames of different VLANs, a VLAN tag field is inserted into the data link l

Page 27

111 VLAN types You can implement VLANs based on the following criteria: • Port • MAC address • Protocol • IP subnet • Policy • Other criteria

Page 28

112 Step Command Remarks 4. Configure a name for the VLAN. name text Optional. The default name is VLAN vlan-id, which is the ID of the VLAN. For ex

Page 29

113 Step Command Remarks 7. Cancel the action of manually shutting down the VLAN interface. undo shutdown Optional. By default, a VLAN interface is

Page 30 - Bulk configuring interfaces

114 [SwitchA-Vlan-interface10] return 2. Configure the default gateway of PC A as 192.168.0.10. 3. Configure the default gateway of PC B as 192.168

Page 31

115 of the port changes to VLAN 1. However, the removal of the VLAN specified as the PVID of a trunk or hybrid port does not affect the PVID setting

Page 32

116 Step Command Remarks 1. Enter system view. system-view N/A 2. Enter interface view or port group view. • Enter Layer 2 Ethernet interface vie

Page 33

117 Step Command Remarks 2. Enter interface view or port group view. • Enter Layer 2 Ethernet interface view: interface interface-type interface-nu

Page 34

118 Step Command Remarks 2. Enter interface view or port group view. • Enter Layer 2 Ethernet interface view: interface interface-type interface-nu

Page 35

2 Step Command Remarks 4. Set the duplex mode of the interface. duplex { auto | full | half } Optional. By default, the duplex mode is auto. 5. Set

Page 36

119 Figure 36 Network diagram Configuration procedure 1. Configure Device A: # Create VLAN 100, and assign port GigabitEthernet 1/0/1 to VLAN 100.

Page 37

120 Untagged Ports: GigabitEthernet1/0/1 [DeviceA-GigabitEthernet1/0/3] display vlan 200 VLAN ID: 200 VLAN Type: static Route Interface: not

Page 38

121 Dynamic MAC-based VLAN assignment When you cannot determine the target MAC-based VLANs of a port, you can use dynamic MAC-based VLAN assignment o

Page 39 - Configuring MAC Information

122 Figure 37 Flowchart for processing a frame in dynamic MAC-based VLAN assignment When you configure dynamic MAC-based VLAN assignment, follow th

Page 40

123 • The MAC-based VLAN feature is mainly configured on downlink ports of user access devices. Do not enable this function together with link aggre

Page 41

124 Step Command Remarks 2. Associate MAC addresses with a VLAN. mac-vlan mac-address mac-address vlan vlan-id [ priority priority ] With dynamic MA

Page 42

125 Configure MAC-based VLANs, so that each laptop is able to access only its own department server, no matter which meeting room it is used in. Figu

Page 43

126 [DeviceA] interface gigabitethernet 1/0/1 [DeviceA-GigabitEthernet1/0/1] port link-type hybrid [DeviceA-GigabitEthernet1/0/1] port hybrid vlan 10

Page 44 - Reference port

127 Total MAC VLAN address count:2 Configuration guidelines 1. MAC-based VLAN can be configured only on hybrid ports. 2. MAC-based VLAN is usuall

Page 45 - Link aggregation modes

128 Step Command Remarks 3. Create a protocol template for the VLAN. protocol-vlan [ protocol-index ] { at | ipv4 | ipx { ethernetii | llc | raw | s

Page 46 - Choosing a reference port

3 • Rx mode—Enables an interface to receive but not send common pause frames. In Figure 1, when both Port A and Port B forward packets at 1000 Mbps,

Page 47

129 Step Command Remarks 1. Enter system view. system-view N/A 2. Enter VLAN view. vlan vlan-id N/A 3. Associate an IP subnet with the VLAN. ip-s

Page 48

130 Figure 39 Network diagram Configuration considerations • Create VLANs 100 and 200. • Associate IP subnets with the VLANs. • Assign ports to

Page 49

131 Please wait... Done. [DeviceC-GigabitEthernet1/0/12] quit # Associate interface GigabitEthernet 1/0/1 with IP subnet-based VLANs 100 and 200. [D

Page 50

132 Task Command Remarks Display MAC address-to-VLAN entries. display mac-vlan { all | dynamic | mac-address mac-address [ mask mac-mask ] | static |

Page 51

133 Configuring super VLANs Super VLAN, also called VLAN aggregation, was introduced to save IP address space. A super VLAN is associated with multi

Page 52

134 Step Command Remarks 2. Enter VLAN view. vlan vlan-id If the specified VLAN does not exist, this command creates the VLAN first, and then enters

Page 53

135 • Assign GigabitEthernet 1/0/1 and GigabitEthernet 1/0/2 to VLAN 2, GigabitEthernet 1/0/3 and GigabitEthernet 1/0/4 to VLAN 3, and GigabitEthern

Page 54

136 Verifying the configuration # Display information about VLAN 10, the super VLAN, to verify the configuration. <Sysname> display supervlan

Page 55

137 Name: VLAN 0005 Tagged Ports: none Untagged Ports: GigabitEthernet1/0/5 GigabitEthernet1/0/6

Page 56

138 Configuring isolate-user-VLANs An isolate-user-VLAN uses a two-tier VLAN structure. In this approach, both an isolate-user-VLAN and secondary VLA

Page 57

4 the physical link is still down when the timer expires, the interface reports the link-down event to the upper layers. Link-up event suppression en

Page 58

139 { The latter configures a port to permit packets from only one isolate-user-VLAN to pass through. Configuration procedure To configure an isola

Page 59

140 Step Command Remarks 9. Configure the uplink port for the isolate-user-VLAN. a. Enter Layer 2 Ethernet or aggregate interface view: interface i

Page 60

141 Isolate-user-VLAN configuration example Network requirements As shown in Figure 42, connect Device A to downstream devices Device B and Device C.

Page 61

142 [DeviceB] interface gigabitethernet 1/0/1 [DeviceB-GigabitEthernet1/0/1] port access vlan 3 [DeviceB-GigabitEthernet1/0/1] port isolate-user-vlan

Page 62

143 GigabitEthernet1/0/1 GigabitEthernet1/0/2 GigabitEthernet1/0/5 VLAN ID: 2 VLAN Type: static Isolate-user-VLAN type

Page 63 - Configuring port isolation

144 Figure 43 Network diagram Configuration procedure 1. Configure Device B: # Configure VLAN 5 and VLAN 10 as isolate-user-VLANs. <DeviceB>

Page 64

145 [DeviceB-GigabitEthernet1/0/2] port access vlan 2 [DeviceB-GigabitEthernet1/0/2] port isolate-user-vlan host [DeviceB-GigabitEthernet1/0/2] quit

Page 65 - STP protocol packets

146 VLAN ID: 2 VLAN Type: static Isolate-user-VLAN type : secondary Route Interface: not configured Description: VLAN 0002 Name: VLAN 0002

Page 66 - Basic concepts in STP

147 Configuring voice VLANs This chapter describes how to configure voice VLANs. Overview A voice VLAN is configured for voice traffic. After assign

Page 67 - Path cost

148 it automatically assigns the receiving port to the voice VLAN, issues ACL rules and configures the packet precedence. You can configure a voice V

Page 68

5 • The speed, duplex, mdi, and shutdown commands are not available during loopback testing. • During loopback testing, the Ethernet interface opera

Page 69

149 Table 15 Required configurations on ports of different link types for supporting tagged voice traffic Port link type Voice VLAN assignment modes

Page 70

150 Table 17 How a voice VLAN-enabled port processes packets in security and normal mode Voice VLAN mode Packet processing mode Security mode • For

Page 71 - STP timers

151 QoS priority settings. You can configure the device either to modify or not to modify the QoS priority settings that the incoming voice traffic c

Page 72

152 delivering them to the CPU. As a result, the receiving port will not be dynamically assigned to the corresponding VLAN. To set a port to operate

Page 73 - MSTP basic concepts

153 Step Command Remarks 3. Add a recognizable OUI address. voice vlan mac-address oui mask oui-mask [ description text ] Optional. By default, each

Page 74 - MST region

154 • The MAC address of IP phone A is 0011-1100-0001. The phone connects to a downstream device named PC A whose MAC address is 0022-1100-0002 and

Page 75 - Port roles

155 [DeviceA-GigabitEthernet1/0/1] port link-type hybrid # (Optional.) Configure GigabitEthernet 1/0/1 to operate in automatic voice VLAN assignment

Page 76 - How MSTP works

156 OUI address of 0011-2200-0000, a mask of ffff-ff00-0000, and a description string of test to be forwarded in the voice VLAN. Figure 47 Network d

Page 77

157 00e0-7500-0000 ffff-ff00-0000 Polycom phone 00e0-bb00-0000 ffff-ff00-0000 3com phone # Display the states of voice VLANs. <DeviceA> dis

Page 78 - STP configuration task list

158 Configuring GVRP This section describes how to configure GVRP. Overview The Generic Attribute Registration Protocol (GARP) provides a generic fr

Page 79 - RSTP configuration task list

6 Enabling auto power-down With the auto power-down function, the system automatically stops supplying power to an interface if the interface is in th

Page 80 - PVST configuration task list

159 • Join messages A GARP participant sends Join messages when it wishes to declare its attribute values or receives Join messages from other GARP

Page 81 - MSTP configuration task list

160 When a GARP application is enabled, it starts a LeaveAll timer. The GARP participant sends a LeaveAll message when the timer expires. Then, the L

Page 82 - Configuring an MST region

161 Field Description Value Attribute type Defined by the GARP application. 0x01 for GVRP, indicating the VLAN ID attribute. Attribute list Conta

Page 83

162 • Forbidden mode—Disables the trunk port from registering or withdrawing dynamic VLAN information, and allows the port to send declarations only

Page 84

163 Configuration procedure To configure GVRP functions on a trunk port: Step Command Remarks 1. Enter system view. system-view N/A 2. Enable GV

Page 85

164 Step Command Remarks 3. Enter Ethernet interface view. • Enter Ethernet interface view or Layer 2 aggregate interface view: interface interface

Page 86

165 Task Command Remarks Display GVRP statistics on ports. display gvrp statistics [ interface interface-list ] [ | { begin | exclude | include } reg

Page 87

166 <DeviceB> system-view [DeviceB] gvrp # Configure port GigabitEthernet 1/0/1 as a trunk port, and assign it to all VLANs. [DeviceB] interfa

Page 88

167 # Configure port GigabitEthernet 1/0/1 as a trunk port, and assign it to all VLANs. [DeviceA] interface gigabitethernet 1/0/1 [DeviceA-GigabitEt

Page 89 - Configuring edge ports

168 GVRP forbidden registration mode configuration example Network requirements As shown in Figure 52, enable GVRP and configure the forbidden regist

Page 90

7 Task Remarks Configuring storm suppression Optional. Applicable to Layer 2 Ethernet interfaces. Enabling loopback detection on an Ethernet interface

Page 91

169 Verifying the configuration Use the display gvrp local-vlan command to display the local VLAN information that GVRP maintains on ports. For examp

Page 92

170 Configuring LLDP This chapter describes how to configure LLDP. Overview In a heterogeneous network, a standard configuration exchange platform i

Page 93

171 Field Description Source MAC address MAC address of the sending port. Type Ethernet type for the upper layer protocol. It is 0x88CC for LLDP.

Page 94

172 TLVs TLVs are type, length, and value sequences that carry information elements. The type field identifies the type of information, the length fi

Page 95

173 Type Description Protocol Identity Indicates protocols supported on the port. An LLDPDU can carry multiple different TLVs of this type. NOTE:

Page 96 - Performing mCheck

174 Type Description Firmware Revision Allows a terminal device to advertise its firmware version. Software Revision Allows a terminal device to ad

Page 97 - Configuring digest snooping

175 This is the fast sending mechanism of LLDP. With this mechanism, a specific number of LLDPDUs are sent successively at 1-second intervals, to hel

Page 98

176 To enable LLDP: Step Command Remarks 1. Enter system view. system-view N/A 2. Enable LLDP globally. lldp enable By default, LLDP is globally

Page 99 - <DeviceB> system-view

177 Step Command Remarks 2. Set the LLDP re-initialization delay. lldp timer reinit-delay delay Optional. The default setting is 2 seconds. Enablin

Page 100 - Configuration procedure

178 By default, management addresses are encoded in numeric format. If a neighbor encodes its management address in character string format, you must

Page 101 - Enabling BPDU guard

8 Step Command 1. Enter system view. system-view 2. Enter Ethernet interface view. interface interface-type interface-number 3. Set speed options f

Page 102 - Enabling loop guard

179 • If the LLDPDU transmit delay is greater than the LLDPDU transmit interval, the device uses the LLDPDU transmit delay as the transmit interval.

Page 103 - Enabling TC-BPDU guard

180 Configuring CDP compatibility To make your device work with Cisco IP phones, you must enable CDP compatibility. If your LLDP-enabled device canno

Page 104 - Enabling BPDU drop

181 Step Command Remarks 3. Enter Ethernet interface view or port group view. • Enter Layer 2 Ethernet interface view: interface interface-type int

Page 105 - MSTP configuration example

182 IMPORTANT: • When the switch is enabled to automatically discover IP phones through LLDP, you can connect at mostfive IP phones to each port of

Page 106

183 Task Command Remarks Display LLDP status of a port. display lldp status [ interface interface-type interface-number ] [ | { begin | exclude | inc

Page 107

184 # Enable LLDP globally. <SwitchB> system-view [SwitchB] lldp enable # Enable LLDP on GigabitEthernet1/0/1. (You can skip this step because

Page 108

185 As the sample output shows, GigabitEthernet 1/0/1 of Switch A connects to an MED device, and GigabitEthernet 1/0/2 of Switch A connects to a non-

Page 109 - PVST configuration example

186 CDP-compatible LLDP configuration example Network requirements As shown in Figure 57, GigabitEthernet 1/0/1 and GigabitEthernet 1/0/2 of Switch A

Page 110

187 [SwitchA-GigabitEthernet1/0/2] lldp compliance admin-status cdp txrx [SwitchA-GigabitEthernet1/0/2] quit Verifying the configuration # Display ne

Page 111

188 Configuring service loopback groups This chapter describes how to configure service loopback groups. Overview A service loopback group contains

Page 112

Copyright © 2014, Hangzhou H3C Technologies Co., Ltd. and its licensors All rights reserved No part of this manual may be reproduced or transmitted

Page 113 - Configuring BPDU tunneling

9 Step Command Remarks 5. Set the unknown unicast suppression threshold ratio. unicast-suppression { ratio | pps max-pps | kbps max-kbps } Optional.

Page 114

189 Figure 58 Setting the state of each member port in a service loopback group Each time a new port is assigned to the service loopback group, the

Page 115

190 • To change the service type of a service loopback group successfully, make sure the following requirements are met: { The service group has no

Page 116 - Enabling BPDU tunneling

191 [DeviceA] service-loopback group 1 type tunnel # Disable MSTP and NDP on GigabitEthernet 1/0/1 through GigabitEthernet 1/0/3, and then assign the

Page 117 - Network requirements

192 Configuring MVRP This section describes how to configure MVRP. Overview Multiple Registration Protocol (MRP) is an attribute registration protoc

Page 118

193 Figure 59 MRP implementation MVRP registers and deregisters VLAN attributes as follows: • When a port receives the declaration of a VLAN attri

Page 119

194 { When receiving a Leave message, an MRP participant sends a Leave message to all participants except the sender. • LeaveAll message { Each MR

Page 120 - Configuring VLANs

195 MVRP registration modes The VLAN information propagated by MVRP includes not only locally, manually configured static VLAN information but also d

Page 121 - VLAN frame encapsulation

196 Enabling MVRP This section describes how to enable MVRP. Configuration restrictions and guidelines • MVRP can work with STP, RSTP, or MSTP, but

Page 122 - Protocols and standards

197 Configuring the MVRP registration mode Step Command Remarks 1. Enter system view. system-view N/A 2. Enter interface view. • Enter Layer 2 E

Page 123

198 Step Command Remarks 5. Configure the Leave timer. mrp timer leave timer-value Optional. The default setting is 60 centiseconds. 6. Configure

Page 124

10 Table 1 Actions to take upon detection of a loop condition Port type Actions No protective action is configured A protective action is configured A

Page 125 - Configuring port-based VLANs

199 Displaying and maintaining MVRP Task Command Remarks Display the MVRP status of the specified port and each MVRP interface in the specified VLAN.

Page 126 - Frame handling on a port

200 Figure 60 Network diagram Configuration procedure Configuring Device A # Enter MST region view. <DeviceA> system-view [DeviceA] stp regio

Page 127

201 [DeviceA] stp enable # Globally enable MVRP. [DeviceA] mvrp global enable # Configure port GigabitEthernet 1/0/1 as a trunk port, and configure i

Page 128

202 # Globally enable MVRP. [DeviceB] mvrp global enable # Configure port GigabitEthernet 1/0/1 as a trunk port, and configure it to permit VLANs 20

Page 129

203 [DeviceC] mvrp global enable # Configure port GigabitEthernet 1/0/1 as a trunk port, and configure it to permit all VLANs. [DeviceC] interface gi

Page 130 - Verifying the configuration

204 [DeviceD-GigabitEthernet1/0/2] mvrp enable[DeviceD-GigabitEthernet1/0/2] quit Verifying the configuration 1. Verify the normal registration mode

Page 131 - Configuring MAC-based VLANs

205 [DeviceB] display mvrp running-status -------[MVRP Global Info]------- Global Status : Enabled Compliance-GVRP : False ----[GigabitEth

Page 132

206 Running Status : Enabled Join Timer : 20 (centiseconds) Leave Timer : 60

Page 133

207 Local VLANs : 1(default), The output shows that: port GigabitEthernet 1/0/1 has learned VLAN 1 and dynamic VLAN 20 created on Device B throug

Page 134

208 1(default), 10, The output shows that the dynamic VLAN information on GigabitEthernet 1/0/3 is not changed after you set the MVRP registration

Page 135

11 Step Command Remarks 5. Enter Ethernet interface view or port group view. • Enter Ethernet interface view: interface interface-type interface-num

Page 136 - Configuration considerations

209 Index A B C D E G H I L M O P R S V A Assigning ports to the isolation group,52 B BPDU tunneling configuration examples,106 C Configuration exam

Page 137

210 Displaying and maintaining loopback and null interfaces,17 Displaying and maintaining MAC address tables,25 Displaying and maintaining MVRP,199 D

Page 138

12 • In normal mode, pins 1 and 2 are transmit pins, and pins 3 and 6 are receive pins. • In across mode, pins 1 and 2 are receive pins, and pins 3

Page 139

13 Testing the cable connection of an Ethernet interface IMPORTANT: • Fiber ports do not support this feature. • If the link of an Ethernet port is

Page 140

14 • The storm control function allows you to set the upper and lower thresholds for all three types of packets separately on the same interface. Con

Page 141

15 Task Command Remarks Display traffic rate statistics over the last sampling interval. display counters rate { inbound | outbound } interface [ inte

Page 142 - Configuration guidelines

16 Configuring loopback and null interfaces This section describes how to configure loopback and null interfaces. Configuring a loopback interface A l

Page 143 - Remarks

17 Configuring the null interface A null interface is a completely software-based logical interface, and is always up. However, you cannot use it to f

Page 144 - Configuring super VLANs

18 Task Command Remarks Clear the statistics on the null interface. reset counters interface [ null [ 0 ] ] Available in user view.

Page 145

Preface The H3C WX5540E Access Controller Switching Engine documentation set describes the software features for the H3C WX5540E Access Controller Swi

Page 146

19 Bulk configuring interfaces You can enter interface range view to bulk configure multiple interfaces with the same feature instead of configuring

Page 147

20 Configuration guidelines When you bulk configure interfaces in interface range view, follow these restrictions and guidelines: • In interface ran

Page 148 - Untagged Ports:

21 Configuring the MAC address table This chapter describes how to configure the MAC address table. Overview An Ethernet device uses a MAC address t

Page 149

22 To improve the port security and prevent hackers from stealing data by using forged MAC addresses, you can bind specific user devices to the port

Page 150

23 Configuring static, dynamic, and blackhole MAC address entries To help prevent MAC address spoofing attacks and improve port security, you can man

Page 151

24 Step Command Remarks 2. Add or modify a blackhole MAC address entry. mac-address blackhole mac-address vlan vlan-id By default, no MAC address en

Page 152

25 Step Command Remarks 1. Enter system view. system-view N/A 2. Configure the aging timer for dynamic MAC address entries. mac-address timer { a

Page 153

26 Task Command Remarks Display MAC address statistics. display mac-address statistics [ | { begin | exclude | include } regular-expression ] Availab

Page 154

27 [Sysname] display mac-address blackhole MAC ADDR VLAN ID STATE PORT INDEX AGING TIME(s) 000f-e235-abcd 1

Page 155

28 Configuring MAC Information To monitor a network, you must monitor users who are joining and leaving the network. Because a MAC address uniquely i

Page 156

Convention Description [ x | y | ... ] * Asterisk marked square brackets enclose optional syntax choices separated by vertical bars, from which you se

Page 157

29 Enabling MAC Information on an interface Step Command Remarks 1. Enter system view. system-view N/A 2. Enter Layer 2 Ethernet interface view. i

Page 158 - Configuring voice VLANs

30 Step Command Remarks 1. Enter system view. system-view N/A 2. (Optional) Configure the MAC Information cache queue length. mac-address informat

Page 159

31 # Set the interval for sending syslog or trap messages to 20 seconds. [Device] mac-address information interval 20

Page 160

32 Configuring Ethernet link aggregation This chapter describes how to configure Ethernet link aggregation. Overview Ethernet link aggregation, or s

Page 161

33 • Selected—A Selected port can forward user traffic. • Unselected—An Unselected port cannot forward user traffic. When a Selected port fails, a

Page 162 - VLAN assignment mode

34 in the section Aggregating links in static mode or Choosing a reference port in the section Aggregating links in dynamic mode. Link aggregation m

Page 163

35 The smaller the priority value, the higher the priority. Table 5 LACP priorities Type Description System LACP priority Used by two peer devices (o

Page 164

36 The one at the top is chosen as the reference port. If two ports have the same aggregation priority, duplex mode, and speed, the one with the lowe

Page 165

37 • Choosing a reference port • Setting the aggregation state of each member port Choosing a reference port The local system (the actor) and the r

Page 166

38 Meanwhile, the system with the higher system ID, which has identified the aggregation state changes on the remote system, sets the aggregation sta

Page 167

Category Documents Purposes Hardware specifications and installation Compliance and safety manual Provides regulatory information and the safety instr

Page 168

39 Feature Reference 802.1X 802.1X in Security Configuration Guide Ports specified as source interfaces in portal-free rules Portal in Security Conf

Page 169 - Configuring GVRP

40 Step Command Remarks 2. Set the system LACP priority. lacp system-priority system-priority Optional. By default, the system LACP priority is 32

Page 170 - GARP timers

41 Step Command Remarks 1. Enter system view. system-view N/A 2. Enter Layer 2 aggregate interface view. interface bridge-aggregation interface-

Page 171 - GARP PDU format

42 Configuration restrictions and guidelines When you set the minimum number of Selected ports for an aggregation group, follow these restrictions an

Page 172 - GVRP registration modes

43 Configuring load sharing criteria for link aggregation groups You can determine how traffic is load-shared in a link aggregation group by configur

Page 173 - Configuring GVRP functions

44 Step Command Remarks 3. Configure the load sharing criteria for the aggregation group. link-aggregation load-sharing mode { destination-ip | dest

Page 174 - Configuring the GARP timers

45 Ethernet link aggregation configuration examples In an aggregation group, only ports that have the same port attributes and class-two configuratio

Page 175

46 # Assign ports GigabitEthernet 1/0/1 through GigabitEthernet 1/0/3 to link aggregation group 1. [DeviceA] interface gigabitethernet 1/0/1 [DeviceA

Page 176 - GVRP configuration examples

47 Layer 2 dynamic aggregation configuration example Network requirements As shown in Figure 11: • Configure a Layer 2 dynamic aggregation group on

Page 177

48 [DeviceA-GigabitEthernet1/0/2] quit [DeviceA] interface gigabitethernet 1/0/3 [DeviceA-GigabitEthernet1/0/3] port link-aggregation group 1 [Device

Page 178

i Contents Configuring Ethernet interfaces ···········································································································

Page 179

49 • Configure two Layer 2 static aggregation groups (1 and 2) on Device A and Device B, and enable VLAN 10 at one end of the aggregate link to comm

Page 180

50 [DeviceA] interface bridge-aggregation 1 [DeviceA-Bridge-Aggregation1] port link-type trunk [DeviceA-Bridge-Aggregation1] port trunk permit vlan 1

Page 181 - Configuring LLDP

51 [DeviceA] display link-aggregation load-sharing mode interface Bridge-Aggregation1 Load-Sharing Mode: source-mac address Bridge-Aggregation2 Lo

Page 182 - LLDPDUs

52 Configuring port isolation Port isolation enables isolating Layer 2 traffic for data privacy and security without using VLANs. You can also use th

Page 183

53 Port isolation configuration example Network requirements As shown in Figure 13, GigabitEthernet 1/0/1, GigabitEthernet 1/0/2, GigabitEthernet 1/0

Page 184 - LLDP-MED TLVs

54 Configuring spanning tree protocols As a Layer 2 management protocol, the Spanning Tree Protocol (STP) eliminates Layer 2 loops by selectively blo

Page 185 - Working mechanism

55 Basic concepts in STP This section describes the basic concepts in STP. Root bridge A tree network must have a root bridge. There is only one roo

Page 186 - LLDP configuration task list

56 Path cost Path cost is a reference value used for link selection in STP. STP calculates path costs to select the most robust links and block redun

Page 187

57 { If configuration BPDUs have the same root bridge ID, their root path costs are compared. For example, the root path cost in a configuration BPD

Page 188 - Enabling LLDP polling

58 Device Port name Configuration BPDU on the port Device B Port B1 {1, 0, 1, Port B1} Port B2 {1, 0, 1, Port B2} Device C Port C1 {2, 0, 2, Por

Page 189

ii Configuration restrictions and guidelines ·········································································································

Page 190

59 Device Comparison process Configuration BPDU on ports after comparison Device C • Port C1 receives the configuration BPDU of Port A2 {0, 0, 0, P

Page 191

60 Figure 16 The final calculated spanning tree The configuration BPDU forwarding mechanism of STP The configuration BPDUs of STP are forwarded ac

Page 192

61 The device uses the max age to determine whether a stored configuration BPDU has expired and discards it if the max age is exceeded. RSTP RSTP ach

Page 193 - Configuring LLDP trapping

62 MSTP features Developed based on IEEE 802.1s, MSTP overcomes the limitations of STP, RSTP, and PVST. In addition to supporting rapid network conve

Page 194 - LLDP configuration examples

63 Figure 18 Network diagram and topology of MST region 3 MST region An MST region consists of multiple devices in a switched network and the netwo

Page 195

64 IST An IST is a spanning tree that runs in an MST region. It is also called MSTI 0, a special MSTI to which all VLANs are mapped by default. In Fi

Page 196

65 MSTP calculation involves the following port roles: • Root port—Forwards data for a non-root bridge to the root bridge. The root bridge does not

Page 197

66 Like STP, MSTP uses configuration BPDUs to calculate spanning trees. An important difference is that an MSTP BPDU carries the MSTP configuration o

Page 198

67 Configuration restrictions and guidelines • If GVRP and a spanning tree protocol are enabled on a device at the same time, GVRP packets are forwa

Page 199 - Overview

68 Task Remarks Configuring the timeout factor Optional. Configuring the maximum port rate Optional. Configuring path costs of ports Optional. Con

Page 200

iii Setting the spanning tree mode ···················································································································

Page 201

69 Task Remarks Configuring the port priority Optional. Configuring the port link type Optional. Configuring the mode a port uses to recognize and

Page 202

70 Task Remarks Enabling the spanning tree feature Required. Performing mCheck Optional. Configuring protection functions Optional. MSTP configur

Page 203 - Configuring MVRP

71 Task Remarks Configuring the mode a port uses to recognize and send MSTP packets Optional. Enabling outputting port state transition information

Page 204 - MRP messages

72 Configuration restrictions and guidelines • Two or more spanning tree devices belong to the same MST region only if they are configured to have t

Page 205 - MRP timers

73 Configuring the root bridge or a secondary root bridge You can have MSTP determine the root bridge of a spanning tree through MSTP calculation, or

Page 206 - MVRP configuration task list

74 Step Command Remarks 2. Configure the current device as a secondary root bridge. • In STP/RSTP mode: stp root secondary • In PVST mode: stp vla

Page 207 - Enabling MVRP

75 Step Command Remarks 1. Enter system view. system-view N/A 2. Configure the maximum hops of the MST region. stp max-hops hops The default sett

Page 208 - Configuring MRP timers

76 In the CIST of an MSTP network or each VLAN of a PVST network, the device uses the max age parameter to determine whether a configuration BPDU rec

Page 209 - Enabling GVRP compatibility

77 Configuring the timeout factor The timeout factor is a parameter used to calculate the timeout time in the following formula: Timeout time = timeo

Page 210

78 Configuring edge ports If a port directly connects to a user terminal rather than another device or a shared LAN segment, this port is regarded as

Page 211

iv Configuration prerequisites ·······················································································································

Page 212 - Configuring Device B

79 Specifying a standard for the device to use when it calculates the default path cost CAUTION: If you change the standard that the device uses to

Page 213 - Configuring Device C

80 Link speed Port type Path cost IEEE 802.1d-1998 IEEE 802.1t Private standard 10 Gbps Single port 2 2000 2 Aggregate interface containing 2 Sele

Page 214 - Configuring Device D

81 Step Command Remarks 2. Enter interface view or port group view. • Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view: in

Page 215

82 Step Command Remarks 2. Enter interface view or port group view. • Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view: in

Page 216

83 Configuring the mode a port uses to recognize and send MSTP packets A port can receive and send MSTP packets in the following formats: • dot1s—80

Page 217

84 Step Command Remarks 2. Enable outputting port state transition information. • In STP/RSTP mode: stp port-log instance 0 • In PVST mode: stp p

Page 218

85 Step Command Remarks 1. Enter system view. system-view N/A 2. Enable the spanning tree feature globally. stp enable By default, the spanning tr

Page 219 - 1(default), 10

86 Step Command 2. Enter Layer 2 Ethernet interface view or Layer 2 aggregate interface view. interface interface-type interface-number 3. Perform

Page 220

87 Step Command Remarks 1. Enter system view. system-view N/A 2. Enter interface view or port group view. • Enter Layer 2 Ethernet interface view

Page 221

88 # Enable digest snooping on GigabitEthernet 1/0/1 of Device B and enable global digest snooping on Device B. <DeviceB> system-view [DeviceB]

Commentaires sur ces manuels

Pas de commentaire